Properties of a curve whose convex hull covers a given convex body

نویسندگان

چکیده

In this note, we prove the following inequality for norm N(K) of a convex body K in $$\mathbb {R}^n$$ , $$n\ge 2$$ : $$\begin{aligned} \le \frac{\pi ^{\frac{n-1}{2}}}{2 \Gamma \left( \frac{n+1}{2}\right) }\cdot {{\,\mathrm{length}\,}}(\gamma ) + ^{\frac{n}{2}-1}}{\Gamma \frac{n}{2}\right) } \cdot {{\,\mathrm{diam}\,}}(K), \end{aligned}$$ where $${{\,\mathrm{diam}\,}}(K)$$ is diameter K, $$\gamma $$ any curve whose hull covers and $$\Gamma gamma function. If addition has constant width $$\Theta then get \ge \frac{2(\pi -1)\Gamma }{\sqrt{\pi }\,\Gamma \Theta 2(\pi -1) \sqrt{\frac{n-1}{2\pi }}\cdot . addition, pose several unsolved problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Hull of Grid Points below a Line or a Convex Curve

Consider a nite non-vertical, and non-degenerate straight-line segment s = s0; s1] in the Euclidian plane E 2. We give a method for constructing the boundary of the upper convex hull of all the points with integral coordinates below (or on) s, with abscissa in x(s0); x(s1)]. The algorithm takes O(log n) time, if n is the length of the segment. We next show how to perform a similar construction ...

متن کامل

On the convex hull of a space curve

The boundary of the convex hull of a compact algebraic curve in real 3-space defines a real algebraic surface. For general curves, that boundary surface is reducible, consisting of tritangent planes and a scroll of stationary bisecants. We express the degree of this surface in terms of the degree, genus and singularities of the curve. We present algorithms for computing their defining polynomia...

متن کامل

Convex Hull Properties of Harmonic Maps

In 1975, Yau [Y] proved, by way of a gradient estimate, that a complete manifold M with non-negative Ricci curvature must satisfy the strong Liouville property for harmonic functions. The strong Liouville property (Liouville property) asserts that any positive (bounded) harmonic function defined on M must be identically constant. In 1980, Cheng [C] generalized the gradient estimate to harmonic ...

متن کامل

Minimizing within Convex Bodies Using a Convex Hull Method

We present numerical methods to solve optimization problems on the space of convex functions or among convex bodies. Hence convexity is a constraint on the admissible objects, whereas the functionals are not required to be convex. To deal with, our method mix geometrical and numerical algorithms. We give several applications arising from classical problems in geometry and analysis: Alexandrov’s...

متن کامل

Convex Hull, Set of Convex Combinations and Convex Cone

Let V be a real linear space. The functor ConvexComb(V ) yielding a set is defined by: (Def. 1) For every set L holds L ∈ ConvexComb(V ) iff L is a convex combination of V . Let V be a real linear space and let M be a non empty subset of V . The functor ConvexComb(M) yielding a set is defined as follows: (Def. 2) For every set L holds L ∈ ConvexComb(M) iff L is a convex combination of M . We no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Beiträge Zur Algebra Und Geometrie / Contributions To Algebra And Geometry

سال: 2021

ISSN: ['2191-0383', '0138-4821']

DOI: https://doi.org/10.1007/s13366-021-00613-z